
Databoard Specification 1

Databoard Specification
Databoard 0.5.2 Specification

Datatypes
Datatype is a type system. There is support for structural and primitive data values, unit
types and restrictions.
Primitive datatypes define just a set of valid values:

Datatype Description

0 Boolean true and false

1 Byte signed 8-bit integers

2 Integer signed 32-bit integers

3 Long signed 64-bit integers

4 Float 32-bit IEEE 754 floating point numbers

5 Double 64-bit IEEE 754 floating point numbers

6 String Unicode strings of arbitrary length

Derived datatypes are constructed from other datatypes using datatype constructors.

Datatype Description

7 Record Contains constant set of fields

8 Array An ordered collection of values

9 Map An object that maps keys to values

10 Optional A container that either has or does not have a value

11 Union A choise between component types.

12 Variant An object that can contain a value of any type

In textual representation types are written with type definitions type <name> = <type>.
Databoard Type definition file (.dbt) is a text file with a list of type definitions. The builtin
types are denoted by their names (Boolean, Byte, Integer, Long, Float, Double, String,
Variant)

 type Name = String
 type Length = Integer

Complex type definitions and in particular recursive ones can be defined in pieces by giving
names to types:

type NodeDescription = referable { name : String, children :
NodeDescription[] }

All other type constructors have form C(T1, ..., Tk), where C is a type constructor and
parameters are datatypes. The following constructors are defined:

 type Example = Optional(BaseType)

Databoard Specification 2

Parametrised type constructors can be defined as follows:

type Tree(A) = | Leaf A | Node referable { left : Tree(A), right :
Tree(A) }

 type Sample(Value) = { time : Double, value : Value }

Annotation
Annotations add meta data to a base type. They never affect to the set of well-formed values
of the type but may restrict the set of valid values.
Different primitive types and datatype constructions support different annotations:

types/constructor annotations supported

Byte, Integer, Long, Float, Double range, unit

String pattern, mimeType, length

Array length

Record referable

 type value = Int(range=[1..10000])
 type Probability = Double(min=[0..1.0])
 type XML = String(mimeType="text/xml")
type Html =
String(pattern="^(([^:/?#]+):)?(//([^/?#]*))?([^?#]*)(\?([^#]*))?(#(.*))?",
length=[..4096])

Built-in types can be annotated. Annotations are written as T(key1=value1, ...,
keyk=valuek), where keyi is an identifier and valuei a value of some built-in type
(depending on the annotation).
The following annotations are defined:
• all numerical types

• unit : String
• range: Range

• String
• pattern : String (regular expression pattern of allowed strings, case sensitive)
• mimeType : String
• length : Range

 type Size = Int(range=[1..10000], unit="m")
 type Amplitude = Double(range=[-1.0..1.0])
 type Frequency = Double(unit="1/s")
 type Document = String(mimeType="text/xml")

Databoard Specification 3

Value Text Notation
Value if (.dbv) is a text file that contains a single data value in text format. The type must be
known to the reader.
Value definition file is a text file (.dbd) that contains a list of value definitions. There is a
name, type, and value in a Value definition in the following format: <name> : <type> =
<value>.
It is assumed that the datatype of the value written in textual format is always known in the
context. Thus it is not necessary to be able to completely infer the type from the value
notation itself.

 obj1 : Integer = 5
 obj2 : { name : String } = { name = "ABC" }
 obj3 : Node = { id = "123", parent = obj4 }

Strings are written by enclosing the string in double quotes. The special characters in the
strings are escaped following Java-specification. [1]

 "some string"
 "string with special characters such as:\n - \\\n - \"\n"

Long strings containing special characters and new lines are enclosed in triple double
quotes:

 """Long string
 spanning multiple
 lines"""

Characters cannot be escaped in this notation (?).
Integers are specified with a sequence of digits preceded by an optional '-'. Floating point
numbers can contain also dot and exponent. The exact syntax follows the Java specification
for int and double literals.

 1
 -345
 3.1415
 1e-10

Records
A record type is a sequence of components. Each component has a type and a name. The
name is a unrestricted Unicode string. The set of (well-formed/valid) values of the record
type is a cartesian product of the (well-formed/valid) values of the component types.
A record type is constructed as { f1 : T1, ..., fk : Tk }, where fi is a field name and
Ti its datatype. A field name cannot be empty and two field names cannot be equal. Field
names are usually written in lowercase.

 type Color = { red : Double,
 green : Double,
 blue : Double }

Databoard Specification 4

The fields of a record value are enclosed in curly brackets {} and separated by comma.
Each field consists of the field name, equality mark and the value.

 pink : Color = { red = 1.0, green = 0.4, blue = 0.4 }

Long field names are escaped with single quotes. The special characters in the strings are
escaped following Java-specification. [2]

 type Example = { 'long field name' : Double }
 value : Example = { 'long field name' = 5.0 }

Referable Records
Recursion in Datatypes is based on referable records. Referable record is a record prefixed
with keyword referable.

 type Tree = referable { children : Tree[] }

Each referable value has a separate value definition. Value definition has name, type and
value in the following format: <name> : <type> = <value>. Referable values are referred
by name.

 root : Tree = { children = [node1, node2] }
 node1 : Tree = { children = [] }
 node2 : Tree = { children = [] }

Tuple Type
A tuple type is a special case of record type where all components have empty names. The
construction is in the following format (T1, ..., Tk).

 type Vector = (Integer, Integer, Integer)

 vec1 : Vector = (1, 2, 3)

When exactly one value is enclosed in parenthesis, the parenthesis are interpreted as
grouping not as a tuple. Thus the following two lines are equal:

 (34)
 34

Unions
A union type is defined with a sequence of components similarly as a record type. The set of
(well-formed/valid) values of the union type is disjoint union of the (well-formed/valid)
values of the component types.
A union type is constructed as | n1 T1 | ... | nk Tk, where ni is a tag name and Ti its
datatype. The tag type is optional and is assumed to be {}, if left out. Tag names have to be
non-empty and distinct. Tag names are usually capitalized.

 type Color = | RGB (Float, Float, Float)
 | RGBA (Float, Float, Float, Float)

Databoard Specification 5

Enumerations are also unions. The type names are left out. Name of the type is used as the
tag name.

 type Method = | Disabled | Adaptive | Manual

 type CommandResponse = | Success
 | Error String

A tag may have the same name as a builtin datatype

 type Example = | Double Double | Long Long

The value consists of the union tag name followed by a value:

 result : CommandResponse = Error "The method call failed."
 white : Color = RGBA (1,1,1,0)

Long union tags are escaped with single quotes. The special characters in the strings are
escaped following Java-specification. [3]

 type Example2 = | 'long union name' (1,1,1)

Arrays
An array type is constructed with a base type. Its values are finite sequences of the base
type.
The textual notation for the array type construction is T[], where T is the base type.

 type VGA = Double[320][240]
 type Names = String[]

Minimum and maximum length of the array can be specified as T[a..], T[..b], T[a..b] or
T[a], where a and b are integers and a ≤ b.
• Exact Value Double[0]
• Unlimited Double[]
• Limited Double[..100], Double[10..100], Double[10..]
The values are enclosed in brackets [] and separated by comma.

 image : Names = ["a", "b", "c"]

Maps
A map type is constructed with a base type of key and value. Its values are finite sequence
of entries of key-value pairs. Keys may not refer even indirectly to the map itself.
Map type is defined as Map(K, V), where K is key datatype, and V is value datatype.

 type TimeSeries = Map(Long(unit="ms"), Double);
 type PropertyMap = Map(String, String)

Map value is a collection of entries. They are enclosed in curly brackets {} and separated
by comma (,). Each entry consists of the key name, equals (=) mark and the value.

Databoard Specification 6

 properties : PropertyMap = map { Name = "Somename", Id = "6.0" }

Long field names are escaped with single quotes. The special characters in the strings are
escaped following Java-specification. [4]

properties : PropertyMap = map { "string key name" = "5.0", "another
key name" = "6.0" }

Variants
Variant consists of type and a value. If is defined as type : value.

 50 : Integer
 {x=50, y=50, z=50} : { x:Double, y:Double, z:Double }
 (50, 50, 50) : { x:Double, y:Double, z:Double }

Type can be omited for strings and booleans

 "Hello World" : String
 "Hello World"
 true : Boolean
 true

Type can also be omited for numbers with the following rule. If there is a full stop (.) then
the type is a Double, otherwise an Integer.

 5.0 : Double
 5.0
 5 : Integer
 5

String Binding
Variant string binding is a filename and URL compatible serialization format of variant
values. Values have the following encoding:

 S<string> String type (without parameters)
Control characters " : < > | ? * \ / % # [0..31] [128..] are
escaped as %<hex><hex>
 " "-space is _
 I<integer> Integer type (without parameters)
 L<long> Long type (without parameters)
B<base64> All other cases. The string is Base64 encoding of a
binary encoded variant.
Base64 encoding has url and filename safe options enabled.

Databoard Specification 7

Optional
An optional type is constructed with a base type. Its values are the values of the base type
and a special value null.

 type Name = Optional(String)
 exmpl1 : Name = "Hei"
 exmpl2 : Name = null

Record fields of optional type can be omited, if there is no value.

 type Example = {
 name : Optional (String)
 }
 exmpl : Example = {}
 exmp2 : Example = { name = "abc" }

Sub- typing
Datatypes do not support explicit subtyping (most of its uses can be replaced by using
Union-constructor), but it can be defined implicitly: a datatype A is a subtype of B, if all
valid values of A are also valid values of B. Primitive datatypes and type constructors are
defined so that if A is a subtype of B then they have the same set of well-formed values.

Validation
Datatype is a mathematical object that is associated with two sets: well-formed and valid
values, where the former set contains the latter. A datatype is basic if its well-formed values
are all valid. Primitive datatypes are basic data types that are completely defined by their
set of valid values. There is only a finite set of primitive datatypes. Derived data types are
constructed from other datatypes by certain datatype constructors we will define. They may
contain also some metadata besides defining the set of valid values.
The distinction between well-formed and valid values can be demonstrated with the
following example: "http:/ / www. simantics. org/ " is a valid value of datatype URI.
"foo::bar" is not a valid URI, but it is well-formed i.e. it can be represented in all contexts
where URIs are used. The number 34 is not a well-formed URI. Similarly, if Probability is
defined as a floating point number between 0 and 1, then 1.5 is well-formed but not a valid
value of Probability.

http://www.simantics.org/

Databoard Specification 8

Order
Two data values can be compared and put into order. There is a comparison rule for each
type. Values are compared structurally.

Type Compare-function

RecordType Field by field in order*

UnionType by tag, if equals then by value. DataTypes have the following order: ArrayType, BooleanType,
ByteType, IntegerType, LongType, FloatType, DoubleType, OptionalType, RecordType,
StringType, UnionType, VariantType, MapType

NumberType compare values

ArrayType compare lengths, then elements

OptionalType Compare HasValue, then Value

StringType Case-sensitive String compare

BooleanType zero if values are the same; a positive value if the first value represents true and the second
false; a negative value if the first is false and send true

VariantType compare type, then value

MapType 1. Compare Sizes, 2. Eliminate method : pair comparison of highest entries. Take highest key
entries of both maps. Compare key, compare value. If equal go to the next entry, else use the
compare value of (key then value).

Default Value
There is a default value for all datatypes.

Type Default Value

RecordType each field according to type.

UnionType tag 0 with default value of the composite type

Byte, Integer, Long, Float, Double 0 or min limit if range exists

MapType no entries

Array minimum number of entries where each entry has the default value of the
composite type.

OptionalType Compare HasValue, then Value

String "" or minimum value if pattern exists

Boolean false

Variant {} : void

Databoard Specification 9

Hash Function
Hash function produces a 32-bit integer. There is a hash function for each type of value:

Type Hash-function

Boolean true=1231, false=1237

Integer value

Long lower 32-bits ^ higher 32-bits

Float IEEE 754 floating-point "single format" bit layout as is.

Double lower 32-bits ^ higher 32-bits of IEEE 754 floating-point "double format" bit layout.

Optional no value = 0, else hash(value)

Array int result = 1; for (int element : array) result = 31 * result + hash(element);

Record int result = 3; for (field : record) result = 31 * result + hash(field)*;

Variant hash(type) + hash(value)

Union tag + hash(value)

Map int result = 0; for (entry : map) result += hash(key) ^ hash(value);

Byte value

*) In case of recursion, where the hash-function enters an referable
data value a second/consecutive time,
 0 is considered as the hash value.

File types

Extension Description

.dbb Databoard Binary File

.dbt Databoard Type Definition File. Consists of type definitions in text format.

.dbd Databoard Value Definition file. Consists of value definitions in text format.

.dbv Databoard Value File. Contains a single value in text format without type information.

Interfaces
A function type can be constructed as D -> R, where D is the domain and R the range of
the function. If the function can throw exceptions, it is denoted as D -> R throws E1,
..., Ek, where Ei is a datatype for an exception. Multi-parameter types can be defined
using the tuple notation:

 Double -> Double
 () -> String
 (Integer,Integer) -> Integer
 Integer -> Integer throws IndexOutOfRange

A method definition is a combination of name and method type. The format is following,
method M : T, where M is the name and T the type of the method. T has to be a function
type.

Databoard Specification 10

 method getSamples : TimeSegment -> Sample[],
 method read : ReadRequest -> Sample,
 method getValueBounds : TimeSegment -> Sample[2]

Interface is a specification of fields and methods the interface has to have. The interface is
defined as a record that contains fields and methods definitions in the curly braces.

 interface HistoryRecord = {
 records : TimeSeries,

 method getSamples : TimeSegment -> Sample[],
 method read : ReadRequest -> Sample,
 method getValueBounds : TimeSegment -> Sample[2]
 }

Interfaces may extend other interfaces. This is denoted as interface I extends B1, ...,
Bk { ... }.

 interface MutableHistoryRecord extends HistoryRecord = {
 method write : Sample[] -> {},
 method clear : {} -> {}
 }

Binary File Format
Abstract mathematical objects cannot be manipulated with computers if they are not
represented somehow. A serialization is a definition of how all well- formed values of a
certain datatype are represented as byte sequences. A serialization format associates some
datatypes with a unique serializer.
Values can be serialized into files in binary format. Databoard Binary (.dbb) file contains
one single value. The file a concatenation of type and value serialization. It also means that
the file is a serialization of of variant.

Binary Serialization Format
There is a binary serialization notation which is format used in files and network
communication. The same notation is used for both datatype and data value
communication. This is possible as datatype is also a value; a value of DataType. There is a
notation for each data value. All numeric values are in Little Endian [5] order.

Boolean
Boolean is an UINT8, with one of the following values.

Value Description

0 false

1 true

2..255 Invalid value

Databoard Specification 11

Numbers

Type Description

Byte Int8

Integer Int32

Long Int64

Float Float

Double Double

Optional
There is a Boolean that describes whether there is an actual value. If false, there is no data
to follow, if true, actual value follows.

Field Description

hasValue : Boolean Tells whether there is a value

value The actual value, available only if hasValue == true.

Length
Length encodes UInt32 to 1 to 5 bytes. It is used in encoding #String and #Array lengths.

Value Encoding

0x00000000..0x0000007F value (1 byte)

0x00000080..0x00003FFF 0x80, value>>6 & 0xff (2 bytes)

0x00004000..0x001FFFFF 0xC0, value>>5 & 0xff, value>>13 & 0xff (3 bytes)

0x02000000..0x0FFFFFFF 0xE0, value>>3 & 0xff, value>>12 & 0xff, value>>20 & 0xff (4 bytes)

0x10000000..0xFFFFFFFF 0xF0, value>>3 & 0xff, value>>11 & 0xff, value>>19 & 0xff, value>>27 & 0xff (5
bytes)

String
String is a series of bytes encoded with UTF-8 / Transformation format [6]. String is prefixed
with #Length describing the number of bytes in the content.

Field Description

length : Length Describes the number of bytes in the string using #Length encoding.

data UTF-8 encoded String.

Array

Field Description

length : UInt32 Describes the number of elements in the array using #Length encoding. This field
is omited if the range of the array is constant.

<elements> Array elements

https://www.simantics.org/wiki/index.php?title=%23String
https://www.simantics.org/wiki/index.php?title=%23Array
https://www.simantics.org/wiki/index.php?title=%23Length
https://www.simantics.org/wiki/index.php?title=%23Length
https://www.simantics.org/wiki/index.php?title=%23Length

Databoard Specification 12

Generic Record

Field Description

<fields> Component fields in the order specified in datatype.

Referable Record

Field Description

recordId : Integer Identity that refers in this serialiation to this instance.

<fields> Component fields in the order specified in datatype.

Generic Union

Field Description

tag : Byte, Short or
Integer

Number that indicates that type in the UnionType's components array. Type
depends on the number of cases.

value The value of the component type.

Variant

Field Description

type : DataType Describes the datatype of the following value.

value The value serialized according to the type

Map

Field Description

length : UInt32 Describes the number of entries in the map using #Length encoding.

<entries> Map Entries

key : K The key serializes according to the Key type

value : V The value serialized according to the Value type

Entries are in ascending ordered by key (See #Order)

https://www.simantics.org/wiki/index.php?title=%23Length
https://www.simantics.org/wiki/index.php?title=%23Order

Databoard Specification 13

Accessor
Accessor is an interface to access, modify and monitor a data container. The actual storage
format and location is implementation specific. For instance, container could be: a bunch of
bytes, a Java object, a file, a folder with files, a network location, or direct memory of a
simulation experiment.

Accessor Reference
From a node to sub-node there is a path reference. There is URI compatible string
representation.

Node Type Child Reference String Notation

Array Element Reference i-

Map Entry Reference m-<key>*

Record Field Index Reference f-<field index>

Record Field Name Reference n-<field name>**

Union Tag Index Reference u-<tag index>

Union Tag Name Reference t-<tag name>**

Union Value Reference uv

Optional Value Reference o

Variant Value Reference v

Label Reference <string>**

 *) Key is ascii serialized with Variant String encoding
 **) Names are escaped using URI escape rules [7]

Path is a chain of node references separated with /.
Example: simantics://localhost/nodes/SSINE/value/o/v

Contracts

History Contract
The word "History" is overloaded; it has been understood as a database, as a process, a
recording of an experiment, or a time series of a variable. We use it to mean everything
mentioned, a collection of concepts related to handling non real-time data.
Sampling is a produre where samples are collected and recorded from real-time variable
context, a DataSource. The output is a SamplingResult.
A step is a virtual timecode. It starts at 0 and increments on every sampling. On each step,
one or more variables are sampled. There is a time record that contains datasource's
timestamps, a corresponding (time)sample for each used virtual timecode. It is used for
mapping virtual codes to actual timestamps.
Record has two representation formats: SPARSE and DENSE. In a DENSE record there is a
sample for every step, and in a SPARSE samples may not have been collected on every step.

Databoard Specification 14

There is a contract for the data format of recorded variables:

 // A result of a data capturing session
 type RecordingSession = {
 // A metadata about the Datasource, an identifier or URL
 datasource : Optional(Variant),

// Events that occured in the data source during sampling, a map of
Event Id to Event
 events: Map(Integer, Event),

// A collection of events that are promoted to milestones, a map of
Milestone Id to Event Id
 milestones : Map(Integer, Integer),

// Identifier of the time variable in recordings. Maps virtual
timecode (integer) to actual time value
// Timevalue is a number type e.g. Double(unit="s"), or a date type
(See #Time_Types)
 timeVariableId : Variant,

 // All records, a map of NodeId to Recording
 recordings : Map(Variant, Variant)
 }

 // The captured data for a single variable
 type Recording(T) = {
 // Record Identifier
 id : Variant,

 // Subscriptions that contributed samples into this recording
 samplerParameters : Subscription[],

 // All labels
 labels : LocalizedTexts,

// All Segments, segments are disjoint collections of captured data
 segments : Segment(T)[]
 }

 // Segment is one continuous series of captured data
 type Segment(T) = {
 // Start time, a timecode, see timeVariableId
 startTime : Integer,

 // End time
 endTime : Integer,

https://www.simantics.org/wiki/index.php?title=%23Time_Types

Databoard Specification 15

// The actual sample values, a map or an array of timecodes to Samples
 samples : | Dense Sample(T)[]
 | Sparse Map(Integer, Sample(T))
 }

 // A single sample
 type Sample(T) = {
// Fields vary, but "value" is mandatory. Its type may also vary.
 value : T
 }

 type Event = {
 // Session unique identifier
 id : Integer,

// Timevalue, a number type e.g. Double(unit="s"), or a date type (See
#Time_Types)
 time : Variant,

 // Title
 title : Optional(String),

 // Message
 message : String,

 // NodeId of the sender object, optional
 source : Optional(Variant),

 // Event Type: alarm, action, error, info, debug
 type : String,

// System Text, generated by the source system, eg. ”YD11D001
started”
 systemText : Optional(String),

 // Comments
 comments : Comment[],

 // Other Metadata
 metadata : Map(String, String)
 }

 type Comment = {
 user : Optional(String),
 message : String
 }

https://www.simantics.org/wiki/index.php?title=%23Time_Types

Databoard Specification 16

SampleCollector

SampleCollector is a component that captures samples from a real-time data source, eg.
simulation or measuring device, and writes them into a SampleCollection.
SamplingConfiguration is an input to the SampleCollector. It describes how to do
sampling. There is a Record for each subscribed variable. Subscription is a describes how
and when samples are recorded from a variable.
Samples may be collected:
• on every step
• on change
• on change that exceeds change tolerance dead band
• at intervals

 type SamplingConfiguration = {
 // Capture events, if true events are captured
 captureEvents : Boolean,

 // Subscribed Variables
 subscriptions : Subscription[]
 }

 type Subscription = {
 variableId : Variant,
 deadband : Optional(Double),
 interval : Optional(Variant)
 }

There can be multiple subscriptions for one variable, though they are both written to one
record. If sampling from multiple subscriptions create a sample at the same timecode, only
one sample is written to the record.
See Dataflows for Simantics layout of data flow components.

Deadband

Often values too small are irrelevant and to conserve space they can be omited. As the
value of variable changes, its values are written to a record. If the difference between

https://www.simantics.org/wiki/index.php?title=Dataflows

Databoard Specification 17

variable value and the last recorded value does not meet the dead band, the new value is
not written to the record. The first and the last value of a deadband segment is always
recorded. When deadband property is enabled, the produced record is in Sparse
presentation format.

The setting deadband = 0.0 can be used for not-storing redundant samples in the record.

File History
There is one directory per RecordingSession and one file for each Recording. Recordings
are binary files (.dbb). RecordingSession is a directory with recordings as individual binary
files (.dbb). There is also RecordingSessio.dbv that contains all the other fields, excluding
recordings-field, of RecordingSession.
File name corresponds to the id of the recording with the following encodings:

 S<string>.dbb String types
control characters " : < > | ? * \ / % [0..31] [128..] are
escaped with %<hex><hex>
 I<integer>.dbb Integer types
 L<long>.dbb Long types
B<base64>.dbb All other cases. The value is binary encoded and
presented as single line Base64 string.
Base64 encoding has Url and filename safe encoding flags enabled.

An example directory of a recording session

 history/
 RecordingSession.dbv
 SPA11%5fValve%2fTemperature.dbb
 SPA11%5fPipe%2fPressure.dbb
 I49589585.dbb
 BAAE.dbb

Datasource Contract
Datasource contract is a databoard presentation format of real-time value producers, such
as experiments. The contract addresses the following issues: values, address space,
identification, and Localizations.
The model consists of nodes. The address space is a tree. Dual structure, a map, enables
random access.
Value is optional. Nodes with children and without values are called folders.
To support next-to all possible back-end systems, the identifier is a variant. The root id is
the Default Value of a Variant type, an empty record. Ids are immutable and unique, two

https://www.simantics.org/wiki/index.php?title=%23Default_Value

Databoard Specification 18

nodes cannot have same identifier. If such is case in the back-end system, a circumventing
measure must be used in the implementation. It is typically sufficient, if path is included in
the format of the id. Another strategy is to use GUIDs.

 type Datasource = {
 nodes : Map(Variant, Node)
 }
 type Node = {
 id : Variant,
 labels : LocalizedText,
 children : Variant[],
 value : Optional(Variant)
 }

Repository Contract
Datasource contract is a databoard presentation format for data repositories, such as
history archive. The contract addresses the following issues: values, address space,
identification, and Localizations.
The model consists of nodes. There is dual structure, a tree hierarchy, and a map for
random access.
To support next-to-all back-end systems the identifier is variant. The root id is the Default
Value of a Variant type, an empty record. Ids are immutable and unique, two nodes cannot
have same identifier. If such is case in the back-end system, a circumventing measure must
be used in the implementation. It is typically sufficient, if path is included in the format of
the id. Another strategy is to use GUIDs. There are three identification serialization formats
for the references: text, binary, url.

 type DataRepository = {
 nodes : Map(Variant, Node)
 }
 type Node = {
 id : Variant,
 labels : LocalizedText,
 children : Variant[],
 value : Optional(Variant)
 }

https://www.simantics.org/wiki/index.php?title=%23Default_Value
https://www.simantics.org/wiki/index.php?title=%23Default_Value

Databoard Specification 19

Remote Procedure Call
Databoard RPC is a method call interface. Server is an object that handles service requests.
The server publishes an #Interface that contains a list of callable methods.

Network Protocol
The protocol is very simple. There are two conversing peers, one is the client and the other
the server. Typically, the server implements has many functions, and client some related
call-back procedures. The connection starts with handshake and is then followed by
serialization of Request and Response objects.
In handshake, boths peers publish their methods and message size limits. (See Standard
Library). Each decide whether to accept the other one's interface, if not the connection is
disconnected.

Request
Client sends RequestHeader, followed by a serialization of the message's request argument.
The datatype and thus serialization format of the request argument was defined in
MethodType which was informed by the server in the handshake.
The server processes the procedure request.
• On procedure success, ResponseHeader is sent, followed by a serialization of

ResponseType. ResponseType serialization format was declared in MethodType.
• On procedure failure, ExecutionError_ is sent, followed by a serialization of ErrorType.

ErrorType format was declared in MethodType.
• On unexpected error, Exception_ is sent
• On invalid method number, InvalidMethodError is sent
• On request or response message size exceeded, ResponseTooLargeError is sent

https://www.simantics.org/wiki/index.php?title=%23Interface
https://www.simantics.org/wiki/index.php?title=%23Remote_Procedure_Call_2
https://www.simantics.org/wiki/index.php?title=%23Remote_Procedure_Call_2

Databoard Specification 20

Standard Library
There is a standard library of named datatypes. The following types are built-in in Simantics
systems.

Datatype
The datatype description of types themselves. This type is used when serializing types in
binary file and network connections.

 type DataType =
 | BooleanType {}
| ByteType { unit : Optional(String), range : Optional(Range) }
| IntegerType { unit : Optional(String), range : Optional(Range) }
| LongType { unit : Optional(String), range : Optional(Range) }
| FloatType { unit : Optional(String), range : Optional(Range) }
| DoubleType { unit : Optional(String), range : Optional(Range) }
| StringType { pattern : Optional(String), mimeType : Optional(String),
length : Optional(String) }
| RecordType referable { referable : Boolean, components : Component[],
methods : MethodTypeDefinition[] }
| ArrayType { componentType : DataType, length : Optional(Range) }
 | MapType { keyType : DataType, valueType : DataType }
 | OptionalType { componentType : DataType }
 | UnionType { components : Component[] }
 | VariantType {}

 type Range = { lower : Limit, upper : Limit }
type Limit = Nolimit | Inclusive { value : Double } | Exclusive { value
: Double } | InclusiveLong { value : Long } | ExclusiveLong { value :
Long }
 type Component = { name : String, type : DataType }
 type DataTypeDefinition = { name : String, type : DataType }

Utility types
UUID [8] represents an universally unique identifier (UUID), a 128-bit value.

 type UUID = { mostSigBits : Long, leastSigBits : Long }

Localized text is a map of user readable text for multiple languages. The key is ISO-639 [9]

language code, and value is the text for that language. Default language is en, it is highly
encouraged to always provide english text in addition to all others.

 type LocalizedText = Map(String, String)

Void type is represented as empty record.

 type Void = {}

Databoard Specification 21

URI type is a textual reference.

 type URI = String

Interface
 type Interface = {
 methodDefinitions : Map(MethodTypeDefinition, {})
 }

 type InterfaceDefinition = {
 name : String,
 type : Interface
 }

 type MethodType = {
 requestType : DataType,
 responseType : DataType,
 errorType : UnionType
 }

 type MethodTypeDefinition = {
 name : String,
 type : MethodType
 }

Databoard Specification 22

Remote Procedure Call
The following types contain the serializatin format of structures used in Databoard RPC
communication protocol.

 type Handshake = | Version0
 type Version0 = {
 recvMsgLimit : Integer,
 sendMsgLimit : Integer,
 methods : MethodTypeDefinition[]
 }

 type Message = | RequestHeader RequestHeader
 | ResponseHeader ResponseHeader
 | ExecutionError_ ExecutionError_
 | Exception_ Exception_
 | InvalidMethodError InvalidMethodError
 | ResponseTooLarge ResponseTooLarge

 type RequestHeader = {
 requestId : Integer,
 methodId : Integer
 }

 type ResponseHeader = {
 requestId : Integer
 }

 type ExecutionError_ = {
 requestId : Integer
 }

 type InvalidMethodError = {
 requestId : Integer
 }

 type Exception_ = {
 requestId : Integer,
 message : String
 }

 type ResponseTooLarge = {
 requestId : Integer
 }

Databoard Specification 23

Accessor types
AccessorReference is a reference or reference path from a node to a decendant node.

type AccessorReference = | ArrayIndexReference { childReference :
Optional(AccessorReference), index : Integer }
| KeyReference { childReference : Optional(AccessorReference), key :
Variant }
| OptionalValueReference { childReference : Optional(AccessorReference)
}
| FieldIndexReference { childReference : Optional(AccessorReference),
index : Integer }
| FieldNameReference { childReference : Optional(AccessorReference),
fieldName : String }
| TagReference { childReference : Optional(AccessorReference) }
| TagIndexReference { childReference : Optional(AccessorReference), tag
: Integer }
| TagNameReference { childReference : Optional(AccessorReference), tag
: String }
| VariantValueReference { childReference : Optional(AccessorReference)
}
| LabelReference { childReference : Optional(AccessorReference), label
: String }

An event contains a modification to the data model.

type Event = | ArrayElementAdded { reference : Optional(
AccessorReference), index : Integer, value : Optional(Variant) }
| ArrayElementRemoved { reference : Optional(AccessorReference),
index : Integer }
| MapEntryAdded { reference : Optional(AccessorReference), key :
Variant, value : Optional(Variant) }
| MapEntryRemoved { reference : Optional(AccessorReference), key :
Variant }
| UnionValueAssigned { reference : Optional(AccessorReference), tag :
Integer, newValue : Optional(Variant) }
| OptionalValueAssigned { reference : Optional(AccessorReference),
newValue : Optional(Variant) }
| OptionalValueRemoved { reference : Optional(AccessorReference) }
| ValueAssigned { reference : Optional(AccessorReference), newValue :
Optional(Variant) }
| InvalidatedEvent { reference : Optional(AccessorReference) }

 type ChangeSet = { events : Event[] }

InterestSet describes how and what of a sub-tree is to be monitored.

type InterestSet = | BooleanInterestSet { notification : Boolean, value
: Boolean }

Databoard Specification 24

| ByteInterestSet { notification : Boolean, value : Boolean }
| IntegerInterestSet { notification : Boolean, value : Boolean }
| LongInterestSet { notification : Boolean, value : Boolean }
| FloatInterestSet { notification : Boolean, value : Boolean }
| DoubleInterestSet { notification : Boolean, value : Boolean }
| StringInterestSet { notification : Boolean, value : Boolean }
| RecordInterestSet { notification : Boolean, notifications :
Boolean[], value : Boolean, values : Boolean[] }
| ArrayInterestSet { notification : Boolean, notifications : Integer[],
value : Boolean, values : Integer[] }
| MapInterestSet { notification : Boolean, notifications : Variant[],
value : Boolean, values : Variant[], componentInterest : InterestSet,
componentInterests : Map(Variant, InterestSet) }
| OptionalInterestSet { notification : Boolean, value : Boolean,
componentInterest : InterestSet }
| UnionInterestSet { notification : Boolean, value : Boolean,
componentInterests : InterestSet[] }
| VariantInterestSet { notification : Boolean, value : Boolean,
componentInterest : InterestSet, completeComponent : Boolean }

Time Types
These great time types are borrowed from JSR-310.
Instant [10] is an instantaneous point on the time-line. It represents nano seconds since
epoch (1970-01-01T00:00:00Z) ignoring leap seconds. In order to represent the data a 96
bit number is required. To achieve this the data is stored as seconds, measured using a
long, and nanoseconds, measured using an int. The nanosecond part will always be between
0 and 999,999,999 representing the nanosecond part of the second.

 type Instant = {
 seconds : Long,
 nanoSeconds : Integer(range=[0..999999999])
 }

Duration [11] is the time between two instants on the time-line. In order to represent the
data a 96 bit number is required. To achieve this the data is stored as seconds, measured
using a long, and nanoseconds, measured using an int. The nanosecond part will always be
between 0 and 999,999,999 representing the nanosecond part of the second. For example,
the negative duration of PT-0.1S is represented as -1 second and 900,000,000 nanoseconds.

 type Duration = {
 seconds : Long,
 nanoSeconds : Integer(range=[0..999999999])
 }

LocalDate [12] is a date without a time zone in the ISO-8601 calendar system, such as
'2007-12-03'.

Databoard Specification 25

 type LocalDate = {
 year : Integer,
 monthOfYear : Integer(range=[1..12]),
 dayOfMonth : Integer(range=[1..31])
 }

LocalTime [13] is a time without time zone in the ISO-8601 calendar system, such as
'10:15:30'. This type stores all time fields, to a precision of nanoseconds. It does not store
or represent a date or time zone. Thus, for example, the value "13:45.30.123456789" can be
stored in a LocalTime.

 type LocalTime = {
 hourOfDay : Integer(range=[0..23]),
 minuteOfHour : Integer(range=[0..59]),
 secondOfMinute : Integer(range=[0..59]),
 nanoOfSecond : Integer(range=[0..999999999])
 }

LocalDateTime [14] is a date-time without a time zone in the ISO-8601 calendar system,
such as '2007-12-03T10:15:30'. This type stores all date and time fields, to a precision of
nanoseconds. It does not store or represent a time zone. Thus, for example, the value "2nd
October 2007 at 13:45.30.123456789" can be stored in an LocalDateTime.

 type LocalDateTime = {
 year : Integer,
 monthOfYear : Integer(range=[1..12]),
 dayOfMonth : Integer(range=[1..31]),
 hourOfDay : Integer(range=[0..23]),
 minuteOfHour : Integer(range=[0..59]),
 secondOfMinute : Integer(range=[0..59]),
 nanoOfSecond : Integer(range=[0..999999999])
 }

ZonedDateTime [15] is a date-time with a time zone in the ISO-8601 calendar system, such
as '2007-12-03T10:15:30+01:00 Europe/Paris'. This type stores all date and time fields, to a
precision of nanoseconds, as well as a time zone and zone offset. Thus, for example, the
value "2nd October 2007 at 13:45.30.123456789 +02:00 in the Europe/Paris time zone" can
be stored in a ZonedDateTime. The purpose of storing the time zone is to distinguish the
ambiguous case where the local time-line overlaps, typically as a result of the end of
daylight time.

 type ZonedDateTime = {
 date : LocalDate,
 time : LocalTime,
 zone : TimeZone
 }

TimeZones [16] are geographical regions where the same rules for time apply. The rules are
defined by governments and change frequently.

Databoard Specification 26

Each group defines a naming scheme for the regions of the time zone. The format of the
region is specific to the group. For example, the 'TZDB' group typically use the format
{area}/{city}, such as 'Europe/London'.
Each group typically produces multiple versions of their data. The format of the version is
specific to the group. For example, the 'TZDB' group use the format {year}{letter}, such as
'2009b'.
In combination, a unique ID is created expressing the time-zone, formed from
{groupID}:{regionID}#{versionID}.
The version can be set to an empty string. This represents the "floating version". The
floating version will always choose the latest applicable set of rules. Applications will
probably choose to use the floating version, as it guarantees usage of the latest rules.
In addition to the group/region/version combinations, TimeZone can represent a fixed
offset. This has an empty group and version ID. It is not possible to have an invalid instance
of a fixed time zone.
The purpose of capturing all this information is to handle issues when manipulating and
persisting time zones. For example, consider what happens if the government of a country
changed the start or end of daylight savings time. If you created and stored a date using
one version of the rules, and then load it up when a new version of the rules are in force,
what should happen? The date might now be invalid, for example due to a gap in the local
time-line. By storing the version of the time zone rules data together with the date, it is
possible to tell that the rules have changed and to process accordingly.
TimeZone merely represents the identifier of the zone.

 type TimeZone = { zoneId : String }

External links
[1] http:/ / java. sun. com/ docs/ books/ jls/ second_edition/ html/ lexical.
doc. html#101089

[2] http:/ / java. sun. com/ docs/ books/ jls/ second_edition/ html/ lexical.
doc. html#101089

[3] http:/ / java. sun. com/ docs/ books/ jls/ second_edition/ html/ lexical.
doc. html#101089

[4] http:/ / java. sun. com/ docs/ books/ jls/ second_edition/ html/ lexical.
doc. html#101089

[5] http:/ / en. wikipedia. org/ wiki/ Endianness
[6] http:/ / en. wikipedia. org/ wiki/ UTF-8
[7] http:/ / www. ietf. org/ rfc/ rfc2396. txt
[8] http:/ / java. sun. com/ j2se/ 1. 5. 0/ docs/ api/ java/ util/ UUID. html
[9] http:/ / www. loc. gov/ standards/ iso639-2/ englangn. html
[10] https:/ / jsr-310. dev. java. net/ nonav/ doc-2010-02-09/ javax/ time/
Instant. html

[11] https:/ / jsr-310. dev. java. net/ nonav/ doc-2010-02-09/ javax/ time/
Duration. html

[12] https:/ / jsr-310. dev. java. net/ nonav/ doc-2010-02-09/ javax/ time/
calendar/ LocalDate. html

http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#101089
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#101089
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#101089
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#101089
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#101089
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#101089
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#101089
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#101089
http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/UTF-8
http://www.ietf.org/rfc/rfc2396.txt
http://java.sun.com/j2se/1.5.0/docs/api/java/util/UUID.html
http://www.loc.gov/standards/iso639-2/englangn.html
https://jsr-310.dev.java.net/nonav/doc-2010-02-09/javax/time/Instant.html
https://jsr-310.dev.java.net/nonav/doc-2010-02-09/javax/time/Instant.html
https://jsr-310.dev.java.net/nonav/doc-2010-02-09/javax/time/Duration.html
https://jsr-310.dev.java.net/nonav/doc-2010-02-09/javax/time/Duration.html
https://jsr-310.dev.java.net/nonav/doc-2010-02-09/javax/time/calendar/LocalDate.html
https://jsr-310.dev.java.net/nonav/doc-2010-02-09/javax/time/calendar/LocalDate.html

Databoard Specification 27

[13] https:/ / jsr-310. dev. java. net/ nonav/ doc-2010-02-09/ javax/ time/
calendar/ LocalTime. html

[14] https:/ / jsr-310. dev. java. net/ nonav/ doc-2010-02-09/ javax/ time/
calendar/ LocalDateTime. html

[15] https:/ / jsr-310. dev. java. net/ nonav/ doc-2010-02-09/ javax/ time/
calendar/ ZonedDateTime. html

[16] https:/ / jsr-310. dev. java. net/ nonav/ doc-2010-02-09/ javax/ time/
calendar/ TimeZone. html

Source: https:/ / www. simantics. org/ wiki/ index. php? title=Databoard_ Specification
Principal Authors: Toni Kalajainen, Niemisto, Lempinen, Hannu Niemisto, Juha kortelainen

https://jsr-310.dev.java.net/nonav/doc-2010-02-09/javax/time/calendar/LocalTime.html
https://jsr-310.dev.java.net/nonav/doc-2010-02-09/javax/time/calendar/LocalTime.html
https://jsr-310.dev.java.net/nonav/doc-2010-02-09/javax/time/calendar/LocalDateTime.html
https://jsr-310.dev.java.net/nonav/doc-2010-02-09/javax/time/calendar/LocalDateTime.html
https://jsr-310.dev.java.net/nonav/doc-2010-02-09/javax/time/calendar/ZonedDateTime.html
https://jsr-310.dev.java.net/nonav/doc-2010-02-09/javax/time/calendar/ZonedDateTime.html
https://jsr-310.dev.java.net/nonav/doc-2010-02-09/javax/time/calendar/TimeZone.html
https://jsr-310.dev.java.net/nonav/doc-2010-02-09/javax/time/calendar/TimeZone.html

	Databoard Specification
	Datatypes
	Value Text Notation
	Sub-typing
	Validation
	Order
	Default Value
	Hash Function
	File types
	Interfaces
	Binary File Format
	Binary Serialization Format
	Accessor
	Accessor Reference
	Contracts
	History Contract
	Datasource Contract
	Repository Contract
	Remote Procedure Call
	Standard Library
	Datatype
	Utility types
	Interface
	Remote Procedure Call
	Accessor types
	Time Types

