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Figure 1: Metamodel of semantic graphs

1 Semantic graphs

Semantic graphs are built from resources and statements. Resources are ei-
ther literals or references to entities such as abstract mathematical concepts
or concrete objects in physical world. If a resource is a literal, it has a value.
Statements are atomic assertations about the entities the resources refer to.
Each statement is composed of three resources: subject, predicate and object.
(Figure 1)

1.1 Graphical notation of semantic graphs

The semantic graphs are best understood graphically. Resources are drawn as
nodes and statements are directed edges. Each edge starts from the subject of
the statement and ends to the object of the statement. The label of the edge is
the predicate of the statement.

If a resource is a literal, its value is written as a label of the node. Otherwise
the label of the node is the name of the resource if the name exist.

These notations are enough to draw any semantic graph, but some additional
notations makes it easier to draw big graphs. The type of the resource can be
indicated by adding it to the label of the node after a colon (:). (Thus the colon
abbreviates a statement having InstanceOf as a predicate.)

Another abbreviation is for the case where a resource has a statement whose
object is a literal. Then the predicate and the value of the object can be added
to the label of the node as

Predicate = Value

An example where all these notations are used is in Figure 2.

1.2 Textual notation of semantic graphs

Ontologies are written on Simantics platform using a textual notation describing
semantic graphs. A resource can be referred in the notation in many different
ways:

• <http://www.simantics.org/Layer0/Entity> refers to a resource with
given URI.
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Figure 2: An example of semantic graph

• L0 refers to a resource that has a local name L0. The resource does
not necessarily have an URI, but it can be given an URI by writing
L0 = <http://www.simantics.org/Layer0>.

• L0.Entity refers to the same resource as in the first example assuming
that L0 is given an URI as in the second example.

• 1, "Hello World!", false and [1,2,3] refer to literals with given values.
The syntax of the values follows Databoard specification.

A statement is written as

subject predicate object

and each statement is written into a separate line. Example Figure 2 can be
written in textual notation as

CHART.TimeSeriesChart L0.Inherits CHART.Chart

CHART.TimeSeriesChart L0.HasDescription "2D chart for viewing time series data."

CHART.TimeSeriesChart L0.AssertsDefault assertion1

CHART.TimeSeriesChart L0.AssertsDefault assertion2

assertion1 L0.InstanceOf L0.Assertion

assertion1 L0.HasPredicate CHART.HasYAxisLabel

assertion1 L0.HasObject "Y"

assertion2 L0.InstanceOf L0.Assertion

assertion2 L0.HasPredicate CHART.HasTimeWindowStart

assertion2 L0.HasObject timeWindowStart

timeWindowStart L0.InstanceOf CHART.ObtainedDouble

We can avoid repeating the subject of each statement by giving predicate–object
pairs either in the same line as the subject or indented after the subject. The
following definitions describe the same graph as above:
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CHART.TimeSeriesChart L0.Inherits CHART.Chart

L0.HasDescription "2D chart for viewing time series data."

L0.AssertsDefault assertion1

L0.AssertsDefault assertion2

assertion1 L0.InstanceOf L0.Assertion

L0.HasPredicate CHARY.HasYAxisLabel

L0.HasObject "Y"

assertion2 L0.InstanceOf L0.Assertion

L0.HasPredicate CHART.HasTimeWindowStart

L0.HasObject timeWindowStart

timeWindowStart L0.InstanceOf CHART.ObtainedDouble

In the similar way, repeating a predicate can be avoided by giving multiple
objects indented after the predicate. The definitions can be chained by giving
statements about an object indented after the object:

CHART.TimeSeriesChart L0.Inherits CHART.Chart

L0.HasDescription "2D chart for viewing time series data."

L0.AssertsDefault

assertion1 L0.InstanceOf L0.Assertion

L0.HasPredicate CHARY.HasYAxisLabel

L0.HasObject "Y"

assertion2 L0.InstanceOf L0.Assertion

L0.HasPredicate CHART.HasTimeWindowStart

L0.HasObject timeWindowStart L0.InstanceOf CHART.ObtainedDouble

If a resource does not have an URI and it is referred only in one place, it can
be referred as instead of a local name. Finally, there are short hand notation
for some relations: L0.InstanceOf is written as :, L0.Inherits is written as
<T and L0.SubrelationOf is written as <R.

CHART.TimeSeriesChart <T CHART.Chart

L0.HasDescription "2D chart for viewing time series data."

L0.AssertsDefault

_ : L0.Assertion

L0.HasPredicate CHARY.HasYAxisLabel

L0.HasObject "Y"

_ : L0.Assertion

L0.HasPredicate CHART.HasTimeWindowStart

L0.HasObject _ : CHART.ObtainedDouble

The example can be shortened further by using templates as described in sub-
section 2.3:

CHART.TimeSeriesChart <T CHART.Chart

L0.HasDescription "2D chart for viewing time series data."

@L0.assertDefault CHARY.HasYAxisLabel "Y"

@L0.assertDefault CHART.HasTimeWindowStart

_ : CHART.ObtainedDouble
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Figure 3: Types

2 Concepts

All names in this and the following sections written in boldface font are concepts
defined in the namespace http://www.simantics.org/Layer0-1.0.

2.1 Types

Types categorize resources and give them their semantics. Relation InstanceOf
gives a resource its type. Relation Inherits between types tells that all instances
of the first type are also instances of the second. Entity is the supertype of all
other types. Every type is an instance of Type. (Figure 3)

All types but Entity must inherit another type and the inheritance relation
must be acyclic. This implies that every type inherits Entity directly or indi-
rectly. Every resource must have at least one type. Thus every resource is an
instance of Entity.

There are three rules that determine when a resource a is an instance of a
type T .

• if there exists a statement (a, InstanceOf, T )

• if a is an instance of T ′ and there exists a statement (T ′, Inherits, T )

• if a′ is an instance of T and there exists a statement (a, Inherits, a′) or
(a,SubrelationOf, a′).

2.2 Relations

The predicate of each statement is a relation and we say that the statement
belongs to that relation. We can also think that the interpretation of each
relation resource is a binary relation that is formed by taking all subject–object
pairs from the statements belonging to the relation. All relations have type
Relation.

A relation may be a subrelation of other relation. This is indicated by rela-
tion SubrelationOf . All statements belonging to a relation also belong to its
superrelations.

A relation may also have an inverse relation. Relation InverseOf tells that
two relations are inverses of each other. If R has an inverse relation I, then for
each statement (a,R, b) there must also exist a statement (b, I, a).

6



Figure 4: Relations

Each relation has a domain (range). It is the set of resources that are valid
subjects (objects) of the statements belonging to the relation. The domain
(range) is the set of all instances of all types given by HasDomain (HasRange)
in the relation. If no types are given, the domain is the intersection of domains
(ranges) of the immediate superrelations of the relation. It is invalid to give a
relation domain or range that is larger than the domain or range of its superre-
lation.

Finally, a relation has also a cardinality range. It is the range of integers given
by HasCardinalityRange. If it is not specified in the relation itself, it is the
intersection of the cardinality ranges of the superrelations. It is invalid to specify
a cardinality range that is larger than the cardinality of any superrelation of a
relation. The cardinality range gives lower and upper bounds for the cardinality
of the relation on each resource in the domain of the relation. The cardinality
of a relation R on resource a is the number of statements which belong to R
and have a as a subject. (Figure 4)

There are two subtypes of Relation with fixed cardinality ranges: Func-
tionalRelation is the type of relations with cardinality zero or one and Total-
Function is the type of relations with cardinality one.

2.3 Assertions

Assertions are a mechanism to describe facts about resources in their types. An
assertion is added to a type with relations Asserts and AssertsDefault. The
first relation asserts an irrevocable fact that is always true for the instances of
the type (such as birds have wings) and the second relation asserts facts that
are usually true for their instances but can be revoked in their instances (such
as birds fly).

The assertion itself is an instance of Assertion and consists of a predicate
(HasPredicate) that must be a relation and an object (HasObject). It adds
one statement with those predicate and object to every instance of the type.
(Figure 5)

Assertions can be specified in graph -files using the templates assert and
assertDefault:

Animals.Bird <T Animals.Animal
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Figure 5: Assertions

Figure 6: Literals

@L0.assert Animals.HasBodyPart Animals.Wings

@L0.assertDefault Animals.CanFly true

2.4 Literals

Literals represent numerical and other values in semantic graphs. They are
resources that are instances of type Literal. Each literal must specify the
type of the literal using HasDataType and must contain a value of that type.
(Figure 6)

Layer0 ontology defines many Literal types that assert their data types, for
example:

L0.String <T L0.Literal

@L0.assert L0.HasDataType $String

The graph compiler knows the literal types for primitive types and their arrays
and infers the type of the literal automatically if not given. For other literal
types, the type must be given in the normal way

"http://en.wikipedia.org/wiki/Literal" : L0.URL

The following is the list of all literal types and the corresponding data types
defined on Layer0:
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literal type data type

Boolean Boolean
Byte Byte
Integer Integer
Long Integer
Float Float
Double Double
String String
BooleanArray Boolean[]
ByteArray Byte[]
IntegerArray Integer[]
LongArray Integer[]
FloatArray Float[]
DoubleArray Double[]
StringArray String[]
Variant Variant
DataType Byte { . . . } | Integer { . . . } | . . .
CardinalityRange { min : Optional(Integer), max : Optional(Integer) }
URI String
Graph {

resourceCount : Integer,
identities : {

resource : Integer,
definition :
| Root { name : String, type : String }
| External { parent : Integer, name : String }
| Optional { parent : Integer, name : String }
| Internal { parent : Integer, name : String }

}[],
statements : Integer[],
values : { resource : Integer, value : Byte[] }[]

}

There are also some literal constants defined in Layer0:

resource type value

True Boolean true
False Boolean false
Cardinality0 CardinalityRange { max=0 }
Cardinality1 CardinalityRange { min=1, max=1 }
Cardinality2 CardinalityRange { min=2, max=2 }
CardinalityAtLeast1 CardinalityRange { max=1 }
CardinalityAtMost1 CardinalityRange { min=1 }
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Figure 7: Unique resource identifiers

Figure 8: Constraints

2.5 Unique resource identifiers

Unique resource identifiers (URIs) are global references to resources. They are
formed using relations ConsistsOf and HasName and a special resource Root
that is the root of the semantic database. (Figure 7)

The URI of Root is http:/. For all resources p and c such that there
is a statement (p,ConsistsOf, c), if p has URI URI(p), then the URI of c is
URI(c) = URI(p) + ”/” + escape(name(c)), where the function name gives the
name (HasName) of a resource and the function escape escapes it as described
in [1].

2.6 Constraints

Domain, range and cardinality range restrictions of the relations allow ontology
developers to specify simple commonly occuring validity constraints in the on-
tologies. They have however very weak expressive power incapable of describing
any complex modelling rules.

Constraints may describe arbitrarily complex rules about resources. A con-
straint can be attached to a type with HasConstraint when all instances of
the type must satisfy the constraint. It can also be added to relations with Has-
DomainConstraint or HasRangeConstraint when the subjects or objects
of the statements beloning to the relation must satisfy the constraint. (Figure 8)

RelationConstraint is one of the constraint types. It restricts how the
relation specified with ConcernsRelation can be used in the context of the
constraint. It can restrict the range and cardinality range of the relation and
add domain and range constraints. (Figure 9)

A typical situation where RelationConstraint is needed is when a super-
type of a type has a relation but in the subtype the relation must be used in
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Figure 9: Relation constraints

Figure 10: Tags

a certain way. For example, HasName has cardinality range 0..1 in Entity.
Using RelationConstraint the property can be made mandatory:

L0.Library <T L0.Entity

L0.HasConstraint _ : L0.RelationConstraint

L0.ConcernsRelation L0.HasName

L0.HasCardinalityRange L0.Cardinality1

In many cases, the same modeling restriction can be modelled either using
domain or range restrictions or using constraints. Domain and range restrictions
should always be preferred because they are easier to analyze for example for
code generation, and because the complexity of their validation is low, they can
be enforced in write transactions.

2.7 Tags

Tags are relations that are used to encode sets of resources. All statements using
them as a predicates, must have the same subject and object. (Figure 10)

Layer0 ontology defines the following tags:
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tag domain description

Abstract Type, Relation Prevents the use of type or relation di-
rectly in the graph. The concept is meant
to be inherited.

Final Type, Relation Prevents the inheritance of type or rela-
tion.

Enumeration Type Marks an enumeration type. All in-
stances of the type must be children
(ConsistsOf) of the type.

Deprecated Entity Marks a concept that is deprecated and
should not be used anymore.

Immutable Entity Prevents any modification to the resource
after the write transaction that added
Immutable tag.

SharedRange Relation Indicates a relation whose objects can be
shared by multiple contexts [needs to be
clarified].

2.8 Relation hierarchy

Layer0 defines a hierarchy of base relations. They are abstract, i.e. they are
not meant to be used directly but inherited. The first two relations do not have
inverses, the inverses of the last two are functional relations. Each relation is a
subrelation of the previous relation in the table.

relation inverse description

IsWeaklyRelatedTo - Base relation of all relations.
IsRelatedTo - A relation that is used in

garbage collection and exporting
subgraphs.

DependsOn IsDependencyOf A relation that is used to prop-
agate change events. [is this
needed anymore?]

IsComposedOf IsOwnedBy If a resource is deleted, all re-
sources linked to it with Is-
ComposedOf are deleted.

HasProperty PropertyOf Links a literal with a resource.
The range or the relation is Lit-
eral [or should it be Prop-
erty?].

2.9 Annotations

Annotations add information to resources in human understandable form. The
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following annotation properties are defined in Layer0. They are all string-valued:

annotation description

HasLabel Gives a descriptive label of the resource. If given it should
be used instead of name in user interfaces.

HasDescription Describes the resource. Long descriptions are formatted
using Mediawiki-markup.

HasComment Adds a comment about the resource. A comment may be
for example about a change made to resource or a found
problem in its defintion.

2.10 Organization of data

All referrable resources (those having a URI) form a tree with Root as a root
and ConsistsOf relation linking parents to children (subsection 2.5). Any
Entity may have children. Because sometimes we just want to group resources
into namespaces that by themselves do not have any special meaning, we have
a type Library for this purpose.

An important goal of the data organization is to be able to move parts of the
data between different semantic graphs. When moving the data, it is necessary
to identify, which parts of the graph belong together so that data that is moved
is consistent and useful in the target graph.

We associate movable parts of the graph with referrable resources with type
Context. Let C be a context (resource). Resources that belong to context C
are determined by the the following rules:

1. C belongs to C.

2. If r′ belongs to context C, r′ is referrable and there is a statement (r′,ConsistsOf, r),
then r belongs to context C.

3. If r′ belongs to context C, there is a statement (r′, IsRelatedTo, r) and
r is not referrable, then r belongs to context C.

There an another way to define “belonging to the context”: A strong path
from a to b is a sequence of referrable resources p0, . . . , pn such that p0 = a,
pn = b and for all 0 ≤ i < n, there is a statement (pi,ConsistsOf, pi+1). A
weak path from a to b is a sequence of resources p0, . . . , pn such that p0 = a,
pn = b and for all 0 ≤ i < n, there is a statement (pi, IsRelatedTo, pi+1) and
pi+1 is not referrable. The first resource of a weak path may be referrable. Now
a resource r belongs to C if there is a strong path from C to some resource r′

and a weak path from r′ to r.
In order to make contexts exportable and importable separately, we need to

restrict the organization of the data in the following way:

If a non-referrable resource r belongs to context C and there is a
weak path from a referrable resource r′ to r, then r′ must belong to
context C.
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Figure 11: An example of an invalid context. Thick edges are ConsistsOf
statements and thin lines other IsRelatedTo statements. A context is marked
with C and a resource violating the restriction is marked with a red circle.

Figure 12: Lists

A situation this restriction forbids is visualized in Figure 11. This restriction
implies that if a resource belongs to two contexts then one of the contexts must
belong to the other.

Ontology is a special kind of context containing shared concepts that are
meant to be used in many different models and other ontologies.

Sometimes a certain resource is needed as a child of an other resource, but
ConsistsOf cannot be used, because the resource already has a parent and
PartOf is functional. In these cases, the resource can be linked using Is-
LinkedTo whose inverse is not functional.

2.11 Lists

List is a structure that can be used to encode ordered data. The list con-
sists List.Entry resources linked into a cycle with List.Next. List itself is
one element in the cycle. Elements of the list are attached to entries with
List.Element.

A list can be written in graph notation as

@L0.list
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element1

...

elementN

It generates statements:

l : L0.List

L0.ListEntry.Next entry1

entry1 : L0.ListEntry

L0.ListEntry.Element element1

L0.ListEntry.Next entry2

...

entryN : L0.ListEntry

L0.ListEntry.Element elementN

L0.ListEntry.Next l

An empty list is thus a list that refers to itself with ListEntry.Next:

emptyList : L0.List

L0.ListEntry.Next emptyList

2.12 Templates

Templates are parametrized semantic graphs. A template has type Template
and it has two properties. HasTemplateParameters is a string array that
gives the parameter names of the template. HasTemplate points to a Graph.

The following templates are defined on Layer0:
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template parameters description

assert Relation,Entity
assertDefault Relation,Entity
tag Tag Tags a resource.
defTag Defines a tag.
symmetric States that a relation is its own

inverse.

property deprecated
singleProperty deprecated
singlePropertyDefault deprecated
optionalProperty deprecated

new Marks a resource and all its chil-
dren as a new resource that is
written to a transferrable graph
as an internal resource.

list Entity* Creates a List -structure of given
elements.

loadBytes String Creates a ByteArray with data
loaded from a file given as a pa-
rameter.

loadString String Creates a String with data
loaded from a file given as a pa-
rameter.

loadDataValue String Creates a Variant with data
loaded from a file given as a pa-
rameter

2.13 Miscellaneous concepts

Property is a type of slightly larger set of resource than Literal. Also enumer-
ations are properties althought they are not literals. [Is this type necessary?]

Value is a type of SCL values. [Need to be fully specified.]

3 Conventions

When designing a new ontology from scratch the following naming rules should
be followed:

• The names of the types and relations are capitalized and multiword con-
cepts are written in CamelCase.

• The names of templates and SCL values are written in lower case.

When transforming an existing data to ontology, it may be better to follow the
conventions of the original data.
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All shared concepts should be defined in ontologies. For small ontologies,
all types can be defined directly in the namespace of the ontology itself. Larger
ontologies are often generated from existing data and the original organization
of the concepts can be mimiced in the ontology using libraries.

If a relation has a single domain type, the relation should be defined in the
namespace of that type:

VP.BrowseContext <T L0.Entity

VP.BrowseContext.Includes <R L0.IsRelatedTo

L0.HasDomain VP.BrowseContext

L0.HasRange VP.BrowseContext

L0.InverseOf VP.BrowseContext.IsIncludedIn <R L0.IsRelatedTo

In this way, the same relation name can be used with different types and the
temptation to use the same relation for different purposes in different types is
reduced.

An obvious exception of the rule is the situation where a relation is defined
in a different ontology from its domain type. It is very bad practice to define
a relation with minimum cardinality greater than zero in a different ontology
than its domain type.

If a relation has an inverse, but it is too unimportant to be specially named,
it should be defined in the namespace of the relation and named as Inverse.
Graph compiler does this automatically when the relation must have an inverse,
but it is not explicitly specified.

Almost all relations should have both domain and range specified. Only
exceptions are relations that really are meaningful in all resources (such as
HasDescription).

Domain and range restrictions should be preferred to the constraints. A
constraint is however needed in the case, where a subtype of a type wants
to restrict the cardinality or range of a relation that has the supertype in its
domain.

A relation whose minimum cardinality is greater than zero should not have
domain constraints, but the constraints should be specified in the domain types
of the relation.

References

[1] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier
(URI): Generic Syntax. RFC 3986 (Standard), January 2005.
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A Summary of concepts

B Summary of validity rules

This section lists the vality rules for semantic graphs. All other rules of the
Layer0 ontology are described in the ontology itself as cardinality, domain and
range restrictions and specified in the diagrams of this document (for example
the rule “Each resource has at most one URI” is enforced by restricting the
cardinality of PartOf and therefore the rule is not mentioned here). Most of
the rules could be written to the ontology as constraints, but then the invalidity
of the graph could prevent validator from finding them.

B.1 Basic rules

Rel1 Predicates are relations. If (a, b, c) is a statement, b must either has
SubrelationOf -statement or be equal to IsWeaklyRelatedTo.

Type1 Every resource has a type. If a is a resource, it must have a statement
belonging to one of the relation InstanceOf, Inherits or Superrela-
tionOf.

Lit1 Literals have values. If a is an instance of Literal, a must have a value.
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Lit2 Only literals have values. If a has a value, a must be an instance of
Literal.

Lit3 Values must respect data types. If a has a value, the value must be a valid
instance of the data type given by HasDataType in a.

Str1 URIs must be unique. If a and b have the same parent (PartOf), and
equal names (HasName), then they must be the same resource (a = b).

Str2 ConsistsOf is acyclic. There must be no cycles in the relation Consist-
sOf.

Str3 Contexts must not intersect. See subsection 2.10.

B.2 Inheritance hierarchy

Hier1 Inheritance is acyclic. There must be no cycles in the relation Inherits.

Hier2 SubrelationOf is acyclic. There must be no cycles in the relation Sub-
relationOf.

Hier3 Entity is the supertype of all types. If resource is an instance of Type,
it must either inherit some other type or be Entity.

Hier4 IsWeaklyRelatedTo is the superrelation of all relations. If resource is
an instance of Relation, it must either be a subrelation of some other
relation or be IsWeaklyRelatedTo.

Hier5 The domain of a relation must be contained in the domains of its su-
perrelations. If there is a statement (R0,HasDomain, T ), then for each
sequence of relations R0, . . . , Rn such that for each 0 ≤ i < n we have
(Ri,SubrelationOf, Ri+1) and for each 0 < i < n we don’t have any
statement of the form (Ri,HasDomain, T ′) and there are statements of
the form (Rn,HasDomain, T ′), then there must be T ′ such that T in-
herits or is equal to T ′ and (Rn,HasDomain, T ′).

Hier6 The range of a relation must be contained in the ranges of its superrela-
tions. As above.

Hier7 The cardinality range of a relation must be contained in the cardinality
ranges of its superrelations. If there is a statement (R0,HasCardinality, h),
then for each sequence of relations R0, . . . , Rn such that for each 0 ≤ i < n
we have (Ri,SubrelationOf, Ri+1) and for each 0 < i < n we don’t have
any statement of the form (Ri,HasCardinality, h′) and there is h′ such
that (Rn,HasDomain, h′), then h must be included in the range h′.
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B.3 Inverses

Inv1 Inverse relations must have inverse statements. If there are statements
(R, InverseOf, I) and (a,R, b), there must also be a statement (b, I, a).

Inv2 Superrelations of inverse relations must be compatible. If there are state-
ments (R, InverseOf, I), (R,SubrelationOf, R′) and (R′, InverseOf, I ′),
then there must be also a statement (I,SubrelationOf, I ′).

Inv3 Domains and ranges of inverse relations must be compatible. If there are
statements (R, InverseOf, I) and (R,HasDomain, T ), there must also
be a statement (I,HasRange, T ).

Inv4 Domains and ranges of inverse relations must be compatible. If there are
statements (R, InverseOf, I) and (R,HasRange, T ), there must also be
a statement (I,HasDomain, T ).

B.4 Modelled restrictions

Res1 Subject must belong to the domain of the predicate. If (a, b, c) is a state-
ment, then a must be in the domain of the relation b. If b has HasDomain
statements, then the domain is the union of all instances of the type given
by the statements. Otherwise the domain is the intersection of the do-
mains of the superrelations of b.

Res2 Object must belong to the range of the predicate. As above.

Res3 Cardinality must be in the cardinality range. If a is a resource and b is a
relation such that a is in its domain, then the number of objects c such
that (a, b, c) is a statement, must be in the cardinality range of b. If b
has property HasCardinalityRange, the cardinality range is given by
the property. Otherwise the cardinality range is the intersection of the
cardinality ranges of the superrelations of b.

Res4 An instances of a type must satisfy the constraints of the type.

Res5 A subject of a statement must satisfy the domain constraints of the pred-
icate of the statement.

Res6 An object of a statement must satisfy the range constraints of the predicate
of the statement.

B.5 Tags

Tag1 Tags encode unary relations. If R is an instance of Tag and (a,R, b) is a
statement, then a = b.

Abs1 Abstract types must not be instantiated directly. If a type T has tag Ab-
stract, then there must not be resources a such that (a, InstanceOf, T ).
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Abs2 Abstract relations must not be used directly. If a relation R has tag
Abstract, then there must not be resources a and b such that (a,R, b).

Final1 Final types must not be inherited. If a type T has tag Final, then there
must not be resources T ′ such that (T ′, Inherits, T ).

Final2 Final relations must not be used as superrelations. If a relation R has
tag Final, then there must not be resources R′ such that (R′,SubrelationOf, R).

C Query semantics

Assume that the raw statements of the semantic database are given as a relation
Stats. The following rules define when one type inherits other type (≤T ), when
one relation is subrelation of other relation (≤R), when a resource is an instance
of a type (:) and when there is a statement 〈a,R, b〉.
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A ≤T A

(A, Inherits, B) ∈ Stats

A ≤T B

A ≤T B B ≤T C

A ≤T C

A ≤R A

(A,SubrelationOf, B) ∈ Stats

A ≤R B

A ≤R B B ≤R C

A ≤R C

(a, InstanceOf, T ) ∈ Stats

a : T

a : T ′ T ′ ≤T T

a : T

a ≤T a′ a′ : T

a : T

a ≤R a′ a′ : T

a : T

(a,R, b) ∈ Stats

〈a,R, b〉
〈a,R′, b〉 R′ ≤R R

〈a,R, b〉
asserts(T,R, b) a : T

〈a,R, b〉

assertsDefault(T,R, b) a : T ¬covers(a,R, T )

〈a,R, b〉

〈T,Asserts, A〉 〈A,HasPredicate, R〉 〈A,HasObject, b〉
asserts(T,R, b)

〈T,AssertsDefault, A〉 〈A,HasPredicate, R〉 〈A,HasObject, b〉
assertsDefault(T,R, b)

(a,R′, b) ∈ Stats R′ ≤R R

covers(a,R, T )

a : T ′ T ′ ≤T T T ′ 6= T asserts(T,R′, b) R′ ≤R R

covers(a,R, T )

a : T ′ T ′ ≤T T T ′ 6= T assertsDefault(T,R′, b) R′ ≤R R

covers(a,R, T )

D Changes to Layer0 in Simantics 1.5

• AssertsDefault is a new concept. It replaces the previous implicit asser-
tion with functional relations.

• Constraint is a new concept.

• List is a new concept.
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• PropertyDefinition, HasPropertyDefinition and IsPropertyDefi-
nitionOf are removed. They are replaced by RelationConstraint.

• OrderedSet, HasNext, HasPrevious and HasElement are removed.
They are replaced by List.

• HasResourceClass is removed and replaced by a separate graph inde-
pendent mechanism in graph compiler.

• Domain, range and cardinality ranges are specified preferrably in relations
instead of current practice to specify them in types.

• FunctionalRelation and TotalFunction don’t have any special seman-
tics. They assert HasCardinalityRange.

E Open issues

E.1 Inverses

One technical choice made in Simantics semantic graph implementation is to
index statements only by subjects and predicates, not by objects. This means,
that it is possible to find efficiently the statements only with given subject or
with given subject and predicate. For finding statements with a given object,
relations have inverse relations: If R is a relation, (a,R, b) is a statement and I
is the inverse relation of R, then (b, I, a) is the inverse statement of (a,R, b).

It is still open question, when exactly a statement has an inverse statement.
The following candidate solutions are proposed:

1. Every relation has an inverse relation that has all inverse statements.

2. Some relations don’t have inverse relations. This is possible only when
the superrelations of the relation don’t have inverse. If a relation has an
inverse relation, every statement of the relation has an inverse statement.
(Current solution)
(Optionally) Resources maintain a reference count of the missing inverse
statements.

3. Every relation has an inverse relation, but not all statements have inverse
statements. For example statements from ontologies to models can be left
out.

The first solution is conceptually the simplest one: each relation must also
have an inverse relation and the graph API enforces that all statements have
inverse statements. The problem with that solution is that the degree of some
inverse relations is enormous, in particular for relations that are typically from
models to ontologies (such as InstanceOf). It is hard to implement statement
addition and removal efficiently in this case (the current implementation is based
on the assumption that is always acceptable to load all statements of a single
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resource to memory). It can also be argued that these high degree inverse
relations are never really needed and even that they might be sometimes used
accidentally with catastrofical consequences.

The idea of the second solution is to define inverses only if they are really
useful and there is no risk of high degree. The most obvious candidates for
inverseless relations are InstanceOf, and relations having an enumeration as a
range. On the other hand, inverse relation is needed for propagating modifica-
tion events from leaves of the models upwards: therefore DependsOn and its
subrelation HasProperty must have inverses.

This solution has some drawbacks:

• In some cases it is useful to know if a resource has inverse statements
even if they are not browsed. It can be used for example to check if a
resource can be safely removed (it is not referred anywhere) or migrated
to a new version. A particular inverse relation, SuperrelationOf, can be
used to check if the relation has subrelations. This information can be
used to optimize queries. This drawback could be removed by maintaining
reference counts for statements without inverses, but that complicates the
implementation and API of semantic graph.

• HasProperty (or any other subrelation of DependsOn) must not be used
to refer resources in ontologies.

• Data modelling is more complicated: It is hard to foresee if the inverse is
needed or not when writing the ontology.

In the third solution, relations always have inverses. However, some inverse
statements may be left out. If it were up to implementations to choose whether
to add inverse or not, inverse relations would be totally useless, because there
would never be any guarantee that inverses statements correspond to state-
ments. A systematical way to leave inverse statements out is to specify in the
resources that certain relations are not written to them. This solution doesn’t
have any of the previous drawbacks:

• It is possible to say in many cases that resource does not have certain
inverse statements. If a certain inverse relation is disabled for the resource,
it is very probable that there are inverse statements.

• HasProperty can be used. DependsOn is disabled for enumeration items
and literals in ontologies.

• All relations have inverses, so ontology writer does not have to make this
decision.

Also this solution has drawbacks:

• It might be hard to decide whether to disable certain relation on certain
resource in the ontology.
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• It might be impossible to list all relations a certain resource might be
referred with. However, this should be based on using suitable superrela-
tions.

E.2 Subrelations of ConsistsOf

In the currect specification, using ConsistsOf relation is the only way to create
URIs for resources. There is often a need for resources that contain other
resources. It is also desirable that the URIs reflect this containment. There are
different solutions for this pattern:

1. The relation ConsistsOf is used to indicate the containment. In this way
URIs are automatically generated as desired. (Current solution)
The drawback of this solution is that because ConsistsOf is used to indi-
cate containment, it cannot be used to just add “unrelated” resources into
the namespace of the resource. Current solution is to separate unrelated
resources by type analysis.

2. Create a containment relation that is subrelation of ConsistsOf. In this
way containment is indicated by a dedicated relation but URIs are still au-
tomatically correct. Unrelated resources can be added into the namespace
of the container by using ConsistsOf.

3. Use both ConsistsOf and a dedicated containment relation that is not
a subrelation of ConsistsOf. The drawback of this solution is that all
developers writing the models of the ontology must remember to add both
statements.

4. Change URI -semantics so that also other relations may generate URIs.

E.3 Default assertions

The default assertions are the most complicated mechanism in Layer0 ontology.
Its completely correct implementation is very hard to implement efficiently. It
is also not needed in its full power. In particular, some way to avoid checking
assertations of subrelations in covering relations should be found.

E.4 Organization of Layer0 concepts

In the section 3, we stated a convention of putting relations into the namespace
of their types. This convention is not followed in Layer0 ontology but all con-
cepts are directly under the ontology. Should this convention be followed also
in Layer0 ontology (which means quite heavy refactoring).

E.5 Immutable -tag

In order to define the exact semantics of Immutable -tag, we need to define
what we mean by a modification to a resource.
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E.6 Property

Is Property needed? How it is related to Enumeration? What is the exact
semantics of HasProperty?

E.7 Constraint types defined in Layer0

Currently there is only one Constraint type in Layer0. There should be one
generic constraint rule based on SCL. Additionally commonly occuring con-
straints should have their own constraint types:

• A certain relation must not have a cycle (could this be generalized to more
general cases when the transitive closure of multiple relations must have
no cycles)

• Types are disjoint (no resource is allowed to instantiate more than one of
the disjoint types).

• Restrict the type of the elements in a list.

• Restrict values of a literal. (see also RequiresDataType)
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